南平市运动会跆拳道比赛落幕 武夷山代表队团体总分第一
喝蔓越莓汁一直被誉为预防女性尿路感染(urinary tract infection,UTI)的神话方法,而现在,新的医学证据表明,摄入蔓越莓制品确实是一种有效的方法,可以在UTI出现之前进行预防。
图3 James Cox(图源:伦敦大学学院)历时四年,分子机制终破解Cameron的出现让科学家们感到痴迷,并希望从中学习到得以缓解疼痛、对抗焦虑的新方法。让痛觉消失的基因不止一种科学家们对CIP患者的关注由来已久。
作者发现,这六名儿童的编码钠离子通道亚型1.7蛋白(Nav1.7)的SCN9A基因都存在突变,Nav1.7功能的丧失,使得他们失去了痛觉和嗅觉。FAAH-OUT的表观遗传沉默也导致FAAH-OUT和FAAH表达水平降低,说明,FAAH-OUT转录有助于FAAH以正常水平表达,FAAH-OUT的产物可能类似于增强子lncRNA,可调控上游基因的表达。另一个值得注意的是ACKR3的显著下调。在随后的焦虑和抑郁测试中,Cameron都得到了最低的零分。甚至面对母亲的过世,她也没有悲伤。
相比之下,Cameron的女儿和母亲就没有携带该微缺失,也未表现出对疼痛的不敏感性,而她的儿子是微缺失的杂合子,但没有导致FAAH功能受损的其他突变,因此对疼痛表现出了部分的不敏感。但幸运的是,Cameron的伤口总是很快愈合。其二是用于毒理学和药理学的研究。
其次,大脑的学习效率仍不是AI所能企及。此外,Hartung还在文章中提出,可进一步探索光学成像全息技术、高通量电生理记录等方法来帮助实现类器官智能的听与说。详解 类器官智能愿景路线图,用人脑细胞搭建生物计算机的未来会是怎样? 2023-04-06 10:34 · 生物探索 2月28日,约翰霍普金斯大学Thomas Hartung教授率领多学科团队在Frontiers in Science发布类器官智能(organoid intelligence,OI)计划。图2 脑细胞培养物打乒乓(图源:[2])类器官智能的听与说与AI一样,类器官智能需要通过接收输入来学习与计算,然后再将结果输出给人类。
类器官智能会感到痛苦吗?伦理问题在脑类器官的研究中不可忽视。首先是运行功耗,例如美国超级计算机Frontier以21MW的功耗在LINPACK 基准测试中达到了1.102 exaFlops的峰值计算性能,即每秒完成一百亿亿次浮点运算,其能效已经超越同类超级计算机,然而人脑仅需20瓦的功耗就能以相同的1 exaFlop运行。
随着脑类器官在结构上变得更加复杂,以及在接受输入、产生输出的过程中建立起原始的记忆,脑类器官是否会发展出意识、是否会体验到痛苦、科学界对这些类器官智能拥有怎样的权利等问题的判定将引发公众对于它们所应持有的道德地位和社会福利的讨论。虽然Hartung认为,离类器官智能真正达到现有AI的水平还需要几十年的时间,但起点应该从现在开始,为类器官智能构建社区、工具和技术,最终实现类器官智能在计算速度、处理能力、数据效率和存储能力上的全部潜力。以上虽然仍只是设想,但文章的作者之一、澳大利亚墨尔本私营公司Cortical Labs首席科学官Brett Kagan进行的一项研究提供了极为接近的例子:他们80万细胞规模的2D脑细胞培养物在5分钟内学会了打乒乓的电子游戏,而AI则需要90分钟。以此为基础,Hartung给出了类器官智能的定义:利用脑类器官的自组装机制来记忆和计算输入。
此外,人们并不希望只把类器官智能当作一个黑箱,其内部状态也希望能得到实时的监测。细胞的来源通常是由人类体细胞重编程为的多能干细胞。在文章Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish中,他们描绘了以脑类器官为硬件创造颠覆性生物计算机的未来愿景,并预计这种技术将指数级提升现代计算的能力,同时开辟出全新的研究领域。就这一问题,Hartung团队已经开发出一种类似于迷你EEG脑电帽的接口设备——3D 微电极阵列(3D microelectrode arrays,3D MEA)。
此外,摩尔定律即将达到它的物理极限,很快人类将无法使更多晶体管装入晶片,而大脑以另一种方式存储信息,千亿数量级的神经元通过千万亿数量级的连接,可实现2500TB的存储容量。因此产生的新型生物数据形式,也需要开发相应的大数据基础设施和标准来进行储存、统筹和处理。
学习效率的低下进一步增加了机器完成任务所需的能源消耗,甚至成为了限制了机器学习的天花板。对此,Hartung已经有了敏锐的意识,并从一开始就与卫生政策与管理系的教授Jeffrey Kahn博士密切合作,由Kahn领导伦理问题的讨论。
其二则侧重于公众,团队将向公众广泛而清晰的分享工作进展,并依据人们对这项技术的看法而制定相应的研究计划。图3 3D MEA记录的三个代表性通道(图源:[1])为类器官智能提供给复杂的生物输入将带来更多可能性,譬如将视网膜与脑类器官相连,有望构建出一个完全近乎于人类视觉的系统。不过,要用这种脑类器官建造计算机,Hartung表示,需要将目前大约5万个细胞的规模扩大至1000万。该设备是像一层柔软、可弯折的外壳包裹在脑类器官外,内侧布满的高分辨率探针电极允许对类脑器官的表层进行多通道的刺激和记录。其一是用于基础神经科学,虽然目前脑类器官还尚未达到智能的水平,但其具备支持基本认知操作的机制,这可以帮助神经科学家进一步了解大脑如何产生认知功能。此外,需要在此规模上生成出可靠的微流体灌注系统,以支持脑类器官的代谢存活和化学信号的发放。
这使得科学家不禁思考,如果绕开让AI变得更接近人脑的尝试,直击本源,让人脑来完成计算呢?2月28日,约翰霍普金斯大学Thomas Hartung教授率领多学科团队在Frontiers in Science发布类器官智能(organoid intelligence,OI)计划。从医学中来,到医学中去除了将类器官智能用于学习和计算,Hartung还提出了其在医学中的两个应用方面。
图1 Thomas Hartung展示脑类器官(图源:约翰霍普金斯大学)类器官智能会是什么样?在过去的十年中,脑细胞培养已经从传统的单层培养转向更接近器官、更有组织的3D培养。击败世界围棋冠军的AlphaGo也是在接受了16万场比赛的数据训练后,才达到如今的水平,相当于人类以每天五小时的强度持续训练175年之久。
比如在简单的辨别相同或不同的任务中,人类仅需10个左右的训练样本即可完成学习,简单生物如蜜蜂也仅需百余个样本,而机器则可能面对上百万个训练样本依然无法完成学习。由于脑类器官诞生于皮肤细胞诱导的多能干细胞,因此可以通过比较健康捐赠者和患病捐赠者的脑类器官来了解诸如自闭症、阿尔兹海默病所造成的疾病特征和功能差异,以及能否修复。
之所以能以类器官称呼该3D神经细胞培养物,则是因为其细胞密度、电生理活动、髓鞘以及参与生物学习的各类细胞的存在,均与大脑接近,可以说在结构和功能等方面堪称大脑的试用装。在工作中,他们提出了两个主要的策略,其一是嵌入式伦理,在研究的发展过程中,所有伦理问题由伦理学家参与规划并持续提出意见。AlphaGo在与世界顶级围棋选手多场对局中的傲人战绩证明了人工智能(AI)在学习与计算复杂问题上所能达到的高度,ChatGPT的横空出世又让许多人惊叹于AI所能达到的超强信息整合能力与接近人类水平的自然语言处理能力,然而,尽管AI已经创造出许多突破性的成绩,但在某些方面,它的表现仍然弱于其所想要模仿的人类智能。此外,还可以测试杀虫剂等物质对认知缺陷造成的影响
该设备是像一层柔软、可弯折的外壳包裹在脑类器官外,内侧布满的高分辨率探针电极允许对类脑器官的表层进行多通道的刺激和记录。此外,需要在此规模上生成出可靠的微流体灌注系统,以支持脑类器官的代谢存活和化学信号的发放。
此外,人们并不希望只把类器官智能当作一个黑箱,其内部状态也希望能得到实时的监测。其次,大脑的学习效率仍不是AI所能企及。
比如在简单的辨别相同或不同的任务中,人类仅需10个左右的训练样本即可完成学习,简单生物如蜜蜂也仅需百余个样本,而机器则可能面对上百万个训练样本依然无法完成学习。其一是用于基础神经科学,虽然目前脑类器官还尚未达到智能的水平,但其具备支持基本认知操作的机制,这可以帮助神经科学家进一步了解大脑如何产生认知功能。
图3 3D MEA记录的三个代表性通道(图源:[1])为类器官智能提供给复杂的生物输入将带来更多可能性,譬如将视网膜与脑类器官相连,有望构建出一个完全近乎于人类视觉的系统。详解 类器官智能愿景路线图,用人脑细胞搭建生物计算机的未来会是怎样? 2023-04-06 10:34 · 生物探索 2月28日,约翰霍普金斯大学Thomas Hartung教授率领多学科团队在Frontiers in Science发布类器官智能(organoid intelligence,OI)计划。此外,还可以测试杀虫剂等物质对认知缺陷造成的影响。图1 Thomas Hartung展示脑类器官(图源:约翰霍普金斯大学)类器官智能会是什么样?在过去的十年中,脑细胞培养已经从传统的单层培养转向更接近器官、更有组织的3D培养。
之所以能以类器官称呼该3D神经细胞培养物,则是因为其细胞密度、电生理活动、髓鞘以及参与生物学习的各类细胞的存在,均与大脑接近,可以说在结构和功能等方面堪称大脑的试用装。以此为基础,Hartung给出了类器官智能的定义:利用脑类器官的自组装机制来记忆和计算输入。
击败世界围棋冠军的AlphaGo也是在接受了16万场比赛的数据训练后,才达到如今的水平,相当于人类以每天五小时的强度持续训练175年之久。其二是用于毒理学和药理学的研究。
此外,摩尔定律即将达到它的物理极限,很快人类将无法使更多晶体管装入晶片,而大脑以另一种方式存储信息,千亿数量级的神经元通过千万亿数量级的连接,可实现2500TB的存储容量。虽然Hartung认为,离类器官智能真正达到现有AI的水平还需要几十年的时间,但起点应该从现在开始,为类器官智能构建社区、工具和技术,最终实现类器官智能在计算速度、处理能力、数据效率和存储能力上的全部潜力。